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Dynamic Analysis of Concrete Pavement under Moving Loads 
 
Syed Oliur Rahman1 and Iftekhar Anam2 
 
 

Abstract 
 
Based on a Finite Element formulation of thick plate on elastic foundation, parametric studies are performed to investigate 
some significant aspects of the dynamic behavior of rigid concrete pavements. Since the 2-parameter soil provides a rational 
and computationally efficient model of the sub-soil, it is used in this work as the sub-grade soil model and the differences from 
the response of the well-known Winkler foundation is investigated. The parametric studies also include the difference between 
static and dynamic response and investigate the effects of structural damping, vehicular speed and soil stiffness on the response 
of concrete pavements due to single wheel as well as HS20 loading. The wheels are moved over the edge and centerline of the 
pavement and the resulting deflections and principal tensile stresses are calculated from a dynamic time domain analysis. 
Results from the numerical analyses indicate that the Winkler soil model may overestimate the structural responses and 
significantly over design the pavement as a result. The effects of soil stiffness and structural damping are found to be 
significant, as is the importance of dynamic analysis. However, the effect of vehicular speed is found to be relatively less 
significant in this study. 
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Introduction  
 
Pavements are an essential feature of the urban 
communication system and provide an efficient means of 
transportation of goods and services. Depending on its 
rigidity compared to the subsoil, pavements are classified as 
flexible, rigid and semi-flexible.  
 
The conventional methods of rigid pavement design are based 
on the closed-form solutions obtained from the static analysis 
of infinitely long plates resting on an elastic foundation 
(Westergaard 1926). The actual discontinuous nature of 
pavement systems is disregarded in this approach. Further, 
the dynamic effects of moving vehicles are accounted for 
indirectly by applying an impact factor. 
 

The dynamic response of beams and plates resting on an 
elastic foundation subjected to moving loads was also studied 
by several researches in the past. However, most of these 
studies used the well-known model of elastic foundation 
developed by Winkler, which assumes the foundation to 
behave like independent discrete springs whose stiffness is 
known as the ‘Modulus of sub-grade reaction’, usually 
denoted by ‘k’.  
 
However, the Winkler model neglects the interconnection 
among the soil layers and as a result may impose some 
serious limitations in the physical modeling of the sub-soil 
system. These limitations can be improved by modeling the 
sub-grade as a two-parameter medium, which provides shear 
interaction between individual spring elements. In this work 
the sub-soil, assumed to be a uniform deposit over a very stiff 
half-space, is approximately modeled as a two-parameter 
medium whose properties are based on the work by Vlasov & 
Leontev (1966).  
 
This study deals with the dynamic analysis of rigid 
pavements under the action of moving vehicular loads. The 
pavements are modeled as thick plates discretized by finite 

elements and the action of vehicular loads is modeled as a 
series of moving wheel loads similar to the HS20 loading  
suggested by AASHTO. 
 
Modeling of the Sub-Soil and Foundation 
 
The Winkler Foundation Model 
 
For the analysis of beams and slabs resting on a soil medium, 
engineers have been using the classical mathematical model 
called Winkler model (Winkler 1867), where the behavior of 
the soil is simplified by means of fictitious independent 
closely spaced springs placed continuously underneath the 
structure. The corresponding spring constant k is called the 
‘Modulus of sub-grade reaction’ of the soil.  
 
Recommendations for the values of k are found in the works 
by Biot (1937), Terzaghi (1955), Vesic (1973) and others. 
Significant applications of the Winkler-type soil model have 
been shown in more recent works by Bay et al. (1996), Kim 
& Roësset (1998), Huang & Thambiratnam (2002) and 
others. A comprehensive text by Hetenyi (1946) on ‘Beams 
on Winkler Foundation’ is used internationally. 
 
So far, based on this concept, many computer codes have 
been developed for the analysis of beams and slabs on an 
elastic foundation; the user of the code has to determine a 
suitable value of k to represent the soil. There is no easy way 
to determine this value of k because its value is not unique for 
a given type of soil, as suggested in some textbooks on 
foundation engineering. Usually, the soil is stratified, having 
different thickness, and the value of an equivalent k has to be 
at least a function of the thickness of the soil layer, even 
when its materiel properties remain the same. The larger the 
thickness, the lower is the value of k. 
 
Many researchers while calculating values of k (e.g., Biot 
1937, Terzaghi 1955, Vlasov & Leontev 1966, Vesic 1973) 
have proved its lack of uniqueness and have suggested that its 
value has to be augmented on edges of the slab, emphasizing 
the need for more research on this topic. In other words, the 
value of k varies in the domain of the slab for different 
material and geometric properties of the soil. 
 
In addition to the lack of uniqueness of k, the Winkler model 
has physical limitations. Since it models the soil as individual 
springs without any interconnection, an obvious deficiency is 
that the un-stressed soil (beyond the range of the loaded area) 
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is also free of any deformation. This often violates the 
compatibility conditions as well and may lead to serious 
errors. 
 
Two-Parameter Foundation Model 
 
A number of different two-parameter models have been 
proposed in the past, including works by Pasternak (1954), 
Vlasov & Leontev (1966). Several researchers have 
demonstrated  have demonstrated the capability of two-
parameter models in representing the soil medium for static 
(e.g., Yang 1972) as well as dynamic (Zaman et al. 1991, 
1993) problems. A method for calculating the parameters of 
the model was presented by Vallabhan et al. (1991). 
 
A single-layer elastic foundation of finite thickness H is 
considered. The subject matter will be restricted to the 
problems where the horizontal displacement is negligible. 
With this assumption, the distribution of displacements and 
the normal stress in the vertical z direction over the height H 
is determined by a function (z). In addition, it is assumed 
that the shear stress at the interface between the compressible 
layer and the rigid base equals to zero. The vertical 
displacement could therefore be expressed as, 
 

w(x,y,z) = W(x,y) (z)                                            (1) 
 
in which W(x,y) = vertical deflection of the foundation at 
surface level and (z) = function for transverse distribution of 
the displacements over the depth of soil stratum, chosen in 
accordance with the nature of the foundation.  
 
For a relatively thin compressible layer of foundation, the 
variation of the normal stress with depth may be small and 
therefore could be considered as constant with depth. Under 
these conditions, the form of the (z) function could be 
approximated by a linear function.  
 
However in a thick layer of foundation, the normal stresses 
vary considerably with depth and therefore the form of (z) 
function must take a different form. In order to account for 
the decrease of the displacement and the normal stress with 
depth, the (z) function could be selected as 
 
 (z) = sinh{(Hz)/m}/ sinh(H)/m)                                (2) 
 
where m is the dimension of the subsequently considered 
plate and  is a constant determining the rate of decrease  of 
the displacements with depth as with this form of (z), it is 
seen that the normal stresses vary with depth as the 
hyperbolic cosine. This form of (z) can also be used for the 
semi-infinite layer where H becomes infinity.  
 
Depending on the nature of the particular problem, many 
analytical expressions in addition to Eqs. (1) and (2) can be 
selected. In fact, the expression could be based on 
experimental data of normal stress distributions. Based on the 
conventional constitutive and compatibility relationships, 
together with the displacement of all points expressed by Eq. 
(1), the condition of equilibrium of the foundation model to 
an externally distributed load q(x,y) on the surface can be 
expressed as 

 
2t 2w(x,y) + k w(x,y) = q(x,y) (0)                     (3) 

 
in which, 2 = 2/x2 + 2/y2 is the Laplace operator, and 
 k = E0/(10

2)  (z)2 dz 
 
 t = E0/4(1+0) (z)2 dz                                         (4) 

are the two elastic of the single- layer foundation; in which   
is an integration over the entire depth of the soil layer; i.e., for 
values of z between 0 and H 
 
E0 = Es/(1s

2) and 0 = s/(1s)  
 
where Es and s  are respectively the modulus of elasticity 
and Poisson’s ratio of the foundation. 
 
For the transverse displacement function described by Eq. 
(2), the two parameters k and t become  
 
k = {E0 /2m(1+0

2)}{sinh(H/m) cosh(H/m) + H)/m}/   
       sinh2(H/m) 
 
t = {E0 m /8 (1+0)}{sinh(H/m) cosh(H/m)  H)/m}/   
       sinh2(H/m)                                                         (5) 
 
However, the present work does not model the sub-soil as a 
three-dimensional elasto-plastic or even an elastic medium, 
because such models are considered too expensive 
numerically. The two-parameter model is considered to be a 
rational compromise between the too simplistic Winkler 
model and the computationally inefficient three-dimensional 
model.     

 

Static and Dynamic Analysis of Plate on Two-parameter 
Foundation 

  
For a rectangular plate resting on a single-layer two-
parameter elastic foundation and traversed by a moving load, 
the governing differential equation is expressed as 
 
      D 4w(x,y)  2t 2w(x,y) + k w(x,y) = q(x,y)                  (6) 

 
where D is the plate rigidity and q(x, y) is the dynamic sub 
grade-pavement-vehicle interaction force transmitted to the 
plate. 
 
The governing differential equation has to be solved by 
applying appropriate boundary conditions. For a rectangular 
plate element resting on a two-parameter foundation, Eq. (6) 
can be transformed into the following stiffness matrix formed 
by adopting the variational principle: 
 

{[k0]  [k1] + [k2]} {d} = {Q}                               (7) 
 
where [k0] is the element plate stiffness matrix, [k1] and [k2] 
are the foundation stiffness matrices corresponding to the 
foundation parameters t and k respectively, {Q} is the element 
nodal force vector and {d} is the element nodal displacement 
vector. The stiffness matrices and the force vector defined in 
Eq. (7) can be derived in terms of foundation properties. The 
detailed expressions are available in literature (e.g., Zaman et 
al. 1993) and not repeated here.  
 
The matrix formed by the combination of [k0], [k1] and [k2] is 
the stiffness matrix K of the plate-foundation system. In 
addition, the mass matrix M and damping matrix C are 
needed for the dynamic analysis of the system. It may be 
mentioned here that all the matrices have been computed by 
Gaussian integration and the consistent mass matrix has been 
used for M. Once they are formed, the dynamic analysis in 
the time domain can be carried out numerically. The most 
widely used numerical approach for solving dynamic 
problems is the Constant Average Acceleration method (i.e., 
Newmark- method  with  = 0.50 and    = 0.25), which has 
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been used here also with a time step of 0.001 seconds. 
 

Material Properties and Structural Models 

The important material properties used in this work include 
the modulus of elasticity (e.g., 20000 Mpa for concrete, 50 
MPa for soil), Poisson’s ratio (0.25 for concrete, 0.30 for 
soil), and modeling parameter for the 2-parameter soil ( = 
1.20). The structural properties include the size (4.8 m  4.8 
m) and thickness (23 cm) of the concrete pavement used here 
and the depth of the uniform soil layer beneath the foundation 
(30 m). 
 

The Finite Element models used for the pavement are shown 
in Fig. 1. The mesh arrangements used for the convergence 
study of the results are (22), (44), (66) and (88), the 
(44) model being used for the rest of the studies as well. The 
quadratic Q9 element used for the Finite Element modeling is 
also shown in Fig. 1. 

The critical points used for the deflections and stresses are 
also shown in the figure. The point C refers to the ‘corner 
point’ and E1 an ‘edge point’. Both of them are used to study 
the deflections and stresses for edge loading. The point E2 
also refers to an ‘edge point’ and M the ‘mid point’ of the 
pavement. They are used for the calculation of deflections 
and stresses for centerline loading. 
 
For the dynamic analyses, the standard AASHTO loading 
HS20 is passed over the edge as well as the centerline of the 
pavement. It may be mentioned that the HS20 loading 
consists of two three-wheel systems 2 m apart along the 
width of the vehicle. Each system consists of a 20 kN load 
followed by two 80 kN loads 4.2 m apart along the length of 
the vehicle. 
 
Convergence Study for the Finite Element Models 
 
Before detailed parametric studies for the plate elements, the 
accuracy of the Finite Element model is studied. In order to 
do that, various Finite Element models are used with 
increased mesh density. The three models shown in Fig. 1 are 
used for the convergence study of the critical deflections and 
stresses. For this purpose, a single 20 kN wheel is passed 
along the edge of the pavement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both the static and dynamic analyses are performed for the 
Winkler soil model while only the dynamic analysis is 
performed using the 2-parameter soil model.  
 
Results from the numerical analyses (for the ‘edge point’ E1 
and ‘corner point’ C) are summarized in Table 1, which 
shows the excellent convergence of the Finite Element 
models with increased mesh density. In fact the deflections 
for the denser meshes [i.e., (66) and (88)] are very similar, 
although most results for the less dense (22) mesh are 
somewhat different, particularly for the dynamic analyses 
using 2-parameter soil model. 
 
The convergence of the Finite Element models can be studied 
by observing the variation of results with the mesh size. For 
example, Fig. 2 shows the variation of corner deflection and 
edge deflection obtained by dynamic analysis as the 4 kips 
wheel passes over the edge of the pavement while it is 
supported on 2-parameter soil. 
 
The ‘relative mesh size’ is obtained by the inverse of the 
number of elements in the x and y-direction. Thus the 
‘converged’ results are obtained when the ‘relative mesh size’ 
is zero; i.e., the number of elements is infinite. The plots 
show that the variations are almost linear, from the 
‘converged’ results are obtained by two methods (Conv1 and 
Conv2), as shown in Table 1. Conv1 refers to the ‘converged’ 
results by fitting the curves in Fig. 2 to best-fit straight lines, 
while Conv2 represents the values by simple linear 
extrapolation of the results from the (22) and (88) meshes. 
The results from these two methods show very good 
agreement, which validates the use of the relatively simpler 
second method (Conv2) for the subsequent studies. 
Therefore, for all the subsequent studies (i.e., time series plots 
or their maximum values), the ‘converged’ deflections as well 
as stresses are referred to the values obtained by linear 
extrapolation of these two sets of results. 
 

Results from Numerical Analyses 
 
As mentioned, the ‘converged’ results obtained by the Conv2 
approach shown before (linear extrapolation) is used for the 
subsequent numerical studies because the results from this 
arrangement are considered to be sufficiently accurate. 

Fig. 1  Finite Element models of the pavement 
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Table 1  Maximum deflections for different mesh arrangements 
(Wheel Load = 20 kN, V = 100 kph, Damping Ratio = 5%) 

 
Numerical Model Item 22 44 66 88 Conv1 Conv2 

Winkler Soil 
Static Analysis 

C 1.319 1.362 1.385 1.398 1.419 1.424 
E1 0.424 0.479 0.499 0.507 0.535 0.535 

Winkler Soil 
Dynamic Analysis 

C 1.485 1.561 1.561 1.565 1.601 1.592 
E1 0.507 0.560 0.575 0.581 0.608 0.606 

2-Parameter Soil 
Dynamic Analysis 

C 0.222 0.284 0.298 0.303 0.334 0.330 
E1 0.150 0.178 0.187 0.195 0.208 0.210 

[All deflections are in mm] 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To observe the characteristics of the fundamental response 
functions, a single 20 kN wheel is passed through the edge 
and centerline of the pavement. Once again, both the static 
and dynamic analyses are performed for the Winkler soil 
model while only the dynamic analysis is performed using the 
2-parameter soil model. The maximum values of deflection 
and maximum tensile stress at critical points are summarized 
in Table 2. 
 
The significant observations from this preliminary analysis 
include the higher stresses at the pavement edge compared to 
mid-span and at corner compared to the edge, the higher 
stresses for Winkler model compared to 2-parameter soil and 
the difference between static and dynamic analyses. Even for 
this single wheel loading, the results using Winkler soil 
model shows that the principal tensile stress in the corner of 
the pavement reaches about 1 Mpa for edge loading. This 
stress is of the same order as the tensile strength of concrete, 
which suggests a possible tensile failure of concrete. 
However, the stresses calculated by the 2-parameter model 
are much lower. This indicates very significant over-design of 
pavements using the Winkler soil model. 
 
The parametric studies for the dynamic analyses for HS20 
loading are different here, with Case1 referring to the 
dynamic analysis of pavements with 5% damping resting on 
2-parameter soil with elasticity modulus of 50 MPa and 
wheels (HS20 loading) moving at a speed of 100 kph. Case2 
to Case6 consist of some variations of the parameters 
mentioned in Case1. Case2 refers to the results for an 
undamped structure with all other properties remaining the 
same, Case3 shows results from static analyses, the 
foundation is changed to Winkler model in Case4, the 
vehicular velocity is reduced from 100 kph to 50 kph in 
Case5, while the elastic sub-grade modulus is halved in 

Case6. 
 
Only the results for the corner deflections and stresses are 
shown for the edge loading and midspan deflections and 
stresses for the centerline loading. The maximum values of 
deflection and stress at critical points are summarized in 
Table 3 while Fig. 3 to Fig. 8 show the time series variations 
of the corner deflections for the wheels passing along the 
edge of the pavement. The results from the analyses show the 
significance of structural damping and dynamic analysis, soil 
model (Winkler vs. 2-parameter, particularly for edge 
loading) and stiffness of the sub-grade soil. However, the 
effect of decreasing the vehicular speed from 100 kph to 50 
kph is found to be insignificant here.  
 

Conclusions 
 
This paper presents some significant results from a detailed 
study (Rahman 2003) on the dynamic analysis of rigid 
pavements. The soil models used in this work are the well-
known Winkler model and an improved 2-parameter model 
incorporating the interaction between soil layers. The main 
conclusions of this study are 
 
1.  For a wheel load passing along the edge of the pavement, 

the Winkler model predicts substantially higher 
deflections and stresses at the corner (C) than at the 
middle of the edge (E1). However, these are not so 
significant for the 2-parameter model, mainly due to its 
additional corner stiffness and interconnection with 
surrounding soil. For wheel loads passing through the 
pavement centerline, a similar comparison can be made 
between the results at edge (E2) and middle (M). 

Fig. 2  Convergence study of deflections (2-parameter soil)
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Table 2  Maximum deflections and stresses for a single wheel 
(Wheel Load = 20 kN, V = 100 kph, Damping Ratio = 5%) 

 

Numerical Model 
Wheel along Edge Wheel along Centerline 

C E1 C E1 E2 M E2 M 
Winkler Soil 
Static Analysis 

1.424 0.535 0.919 0.385 0.575 0.154 0.122 0.145 

Winkler Soil 
Dynamic Analysis 

1.592 0.606 0.989 0.614 0.622 0.192 0.193 0.230 

2-Parameter Soil 
Dynamic Analysis 

0.330 0.210 0.218 0.387 0.225 0.119 0.143 0.146 

[All deflections are in mm and stresses are in MPa] 
 
 

Table 3  Maximum deflections and stresses for HS20 loading 
 

Numerical Model 
Wheels along Edge Wheels along Centerline 
C C M M 

Case 1 1.328 0.486 0.466 0.715 
Case 2 (Undamped) 1.579 2.117 0.558 1.256 
Case 3 (Static Analysis) 1.288 0.064 0.436 0.281 
Case 4 (Winkler Soil) 6.522 2.396 0.829 1.362 
Case 5 (V = 50 kph) 1.411 0.483 0.477 0.705 
Case 6 (Es = 25 MPa) 2.319 0.976 0.934 0.900 

[All deflections are in mm and stresses are in MPa] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Corner Deflection for Case 1
(Model Conditions)
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Fig. 4 Corner Deflection for Case 2 
(Undamped Dynamic)
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Fig. 5 Corner Deflection for Case 3
(Undamped Static)
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Fig. 6 Corner Deflection for Case 4 
(Winkler Foundation)
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2.  The deflections and stresses from the Winkler model are 

significantly higher than the 2-parameter results, both for 
the edge loading as well as the centerline loading. This 
indicates a possible over-design of pavements using the 
Winkler soil model. In this study, the maximum tensile 
stress for the pavement with (5% damping) over Winkler 
soil went upto about 1 MPa for 20 kN wheel, but the 
corresponding maximum stress for the pavement over 2-
paramter soil was less than 0.4 Mpa. 

3.    The effect of damping is found significant, with results 
from the undamped structure being much higher than the 
damped structural responses due to the large free 
vibration for undamped system. Although real structures 
are almost never undamped, this result demonstrates the 
significance of damping ratio on the structural response, 
particularly if the ratio is small. 

4.    The results from static analyses are much lower compared 
to dynamic results particularly for the HS20 loading, 
which shows the importance of dynamic analysis in the 
design of pavements.  

5.    The effect of changing the vehicular speed is found to be 
insignificant here. In this study, the results do not change 
much even after reducing the vehicular speed from 100 
kph to 50 kph. In fact, the maximum deflections or 
stresses appear to be slightly smaller in some cases and 
slightly greater in others.  

6.    The deflections and stresses depend significantly on the 
stiffness of the sub-grade. In this study, they are almost 
doubled by using a soil whose elasticity modulus is half 
of the original model. 
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Fig. 7 Corner Deflection for Case 5 
(V=50 kph)
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Fig. 8 Corner Deflection for Case 6 
(Softer Soil)
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